Management of Bus Operations and Technology

Nigel H.M. Wilson

June 10th,2008

OUTLINE

- Applications of Automated Data Collection Systems
 - Scheduling
 - Connection Protection
 - Service Quality Monitoring
 - Travel Pattern Inference
 - Travel Behavior
- Ongoing Bus Operations Research
 - Scheduling
 - Limited Stop / X Service Design
 - Operations Management and Control
 - Interchange Analysis

MIT Research Focus

- Get better information from Automated Data Collection Systems
 - AFC: Automatic Fare Collection Systems
 - AVL: Automatic Vehicle Location Systems
 - APC: Automatic Passenger Counting Systems
- To support key agency functions:
 - Service and Operations Planning
 - Operations Management and Control
 - Customer Information
 - Performance Measurement and Monitoring

Scheduling Application

Context: Rail scheduling and operations control

Data: Train tracking data

Focus: Analysis of train dwell times, headways, schedule

adherence, time-space diagrams, animation

playback capability

Application: MBTA Red Line

Recommendations:

Schedule adjustments, branch offsets adjustments, tighter terminal departure discipline

Key researchers: Haris Koutsopoulos, Matt Dixon, Zhigao Wang (2006)

Connection Protection Application

Context: Transfers from rail to bus

Data: Train tracking data

Focus: Develop improved but simple dispatching strategy

for buses based on bus holding lights linked to

impending train arrival after long gap

Application: MBTA Red Line Alewife Station

Recommendations:

Implementation would reduce transfer wait time by 25% and greatly reduce "near misses"

Key researchers: Drew Desautels (2006)

Service Quality Monitoring Application

Context: Rail operations

Data: Smart card station entry and exit times

Focus: Develop measures of service reliability from

customer's perspective

Application: London Underground service times using Oyster time data

Recommendations:

Use of reliability buffer as an additional measure of service delivery alongside mean measure (Journey Time Metric)

Key researchers: Joanne Chan (2007), David Uniman (in progress)

Travel Pattern Inference Application

Context: Any public transport network -- bus, rail, or

combined

Data: AFC transactions (smart card or magnetic stripe) and

AVL data

Focus: Estimation of customer origin-destination travel

patterns

Application: CTA Rail network

London Underground network

CTA Bus network

Recommendations:

A practical method for estimating travel patterns with virtually no additional cost beyond existing ADCs

Key researchers: Jinhua Zhao (2004), Alex Cui (2006), Fabio Gordillo (2006), Joanne Chan (2007)

Basic Idea

Each AFC record includes:

- AFC card ID
- transaction type
- transaction time
- transaction location: rail station or bus route

The destination of many trip segments (TS) is also the origin of the following trip segment.

- Note: 1) each bus boarding requires a new AFC transaction: TS_{bus} represents an unlinked bus trip
 - 2) rail-rail transfers do not require a new AFC transaction: TS_{rail} represents a path on the rail network

Travel Behavior Application

Context: Any public transport network -- bus, rail, or

combined

Data: Registered smart card address (exact or

approximate), smart card transactions, and AVL data

Focus: Infer public transport access behavior and modal

preferences

Application: CTA bus and rail network

Recommendations:

This represents a valuable way to monitor behavior and modal preferences as the system changes over time

Key researchers: Mariko Utsunomiya (2005), Saumya Gupta (2006)

Path Choice Analysis: Sample Users

- Multiple rail and bus routes serving the loop
- High quality express bus service and rail service

Ongoing Bus Operations Research

- Scheduling
- Limited Stop / X Service Design
- Operations Management and Control
- Interchange Analysis
- Bus Route Simulation Model Development
- Chicago Loop Congestion Analysis

Bus Scheduling

- Bus service reliability is a chronic concern of customers and agencies
- Traditionally schedules are developed using rules of thumb
 not a real problem because data has been very poor on actual running times
- Now with AVL data we can evaluate alternative scheduling methods
- Goal is to develop schedules which:
 - result in reliable service
 - don't increase running time too much
 - don't cost too much

Key researchers: Grace Fattouche (2007), Clara Yuan (in progress)

Problem Statement

On high-frequency service, i.e. headways ≤ 10-12 minutes:

 Develop a timepoint level schedule which minimizes the total weighted time cost to customers

Subject to:

- At least 90% of buses should be ready to start their next trip on time
- Operators should have at least 5 minutes of recovery time at one end of the route

Model

- Evaluates the cost for the waiting passengers, onboard passengers and CTA of a proposed schedule
- Assumes schedule-based holding strategy (i.e. operators do not depart time point early)
- Inputs: AVL and APC data, headway, segment running times and number of buses in operations
- Outputs: costs for the waiting passengers, onboard passengers and CTA

Application to CTA Route 95E

- CTA Key route
- Runs 5 miles East-West on 93rd St. and 95th St.
- Five time points
- Connects with the southern Red Line terminal, and two Metra stations
- High frequency: every 10 mins between 6:00 and 18:00

Percentage Change in Passenger Excess Time

Sensitivity Analysis

The generalized cost minimization schedule is sensitive to:

- Ratio of waiting passengers to through passengers
- Location of the segment on the route
- Ratio of waiting passengers on later segments to through passengers
- Route Length

Limited Stop / X Service Design

- Many high-frequency bus routes in major metropolitan areas are long and have many stops, resulting in:
 - long travel times
 - poor reliability
 - unattractive for long journeys
- Limited Stop / X Services are overlay routes with far fewer stops, which:
 - provide alternative service mix, which attracts different markets, e.g. longer journeys
 - reduce the interaction between buses, i.e., less bunching
- One step towards BRT

Key researchers: Stacey Schwarcz (2004), Harvey Scorcia (in progress)

Problem Statement

- Establish guidelines for the addition of limited stop service
- Develop a model to help in design and evaluation of these services

Key elements in limited stop service design:

- Reduction in # of stops
- Running time savings
- Headway split between local and limited stop service
- Resources: unchanged or increased

Model Components

- Key inputs:
 - Demand by stop
 - Bus running times
 - Limited stops
 - Frequency split
- Key processes:
 - Stop choice for customers closest to local only stop
 - Route choice for customers at combined stops
- Key outputs:
 - Travel times
 - Productivity
 - Market Share
 - Use of stops

CTA Route 9/X9 Description

X9 Implemented in Summer 2006

	9	Х9	
Length	20 miles		
Average Daily Ridership	35,000		
Combined Headway	5 min. Split 50%		
Number of Stops	149	39	
Travel Time (mins):			
NB	111	93	
SB	106	87	

Change in Platform Hours

Route X9 required a modest increase in resources

Resources (Morning peak 6:30 - 9:30)

Resources (All day)

Productivity

Overall increase in productivity

Route 9/X9 Productivity (Morning peak)

Limited Stop Design Guidelines

Stop spacing:

- CTA X services typically serve 25-30% of local stops
- Stop spacing is 0.3-1 mile between X service stops
- Based on cumulative demand by stop function

Limited Stop Design Guidelines

- Running time reduction:
 - Savings of at least 15% should be achievable
- Limited stop frequency share:
 - Frequency on X routes must be greater than on local service
 - Typically 60% of service should be on the X route

Operations Management and Control

Objectives:

Examine how real-time AVL system can support improved service reliability

Application:

- CTA Route 20
- AM peak period headway: 5 minutes
- Average weekday boardings: 24,700
- 8.5 mile, 60 minute eastbound trip
- Capacity and bus bunching issues

Key researchers: Chris Pangilinan (2006)

Operations Management and Control

Application:

CTA Bus Tracker System

MIT Student acted as controller for one week using Bus Tracker

information

Individual Buses

Results

Headways leaving Austin (Terminal)

Results

Headways 3.5 miles east of terminal

Results: Excess Wait Time

% of Scheduled Wait Time	Austin	Cicero	Pulaski	Kedzie	Ashland	Halsted
Previous Week	23%	38%	50%	58%	55%	77%
Experiment Period	9%	15%	20%	23%	22%	31%

Results in Perspective

 To achieve the same reduction in excess passenger waiting time <u>without</u> improving reliability:

6 more buses would have to be added to the current 24 during the AM peak

Summary of Results

- Real-time AVL and supervision strategies contributed to:
 - Lower rate of bus bunching
 - Lower rate of long headways
- Downstream headways benefited from terminal control
- Reduction in excess wait time
- Dwell time, traffic, and other factors will take its toll on reliability, regardless of supervision

Interchange Analysis

Research Questions:

- Can Oyster data be used to help improve the public transport network in London by focusing on bus passenger interchange behaviour?
- Key contribution:
 - Methodology for exploring passenger interchange behaviour in London using Oyster card data

Key researchers: Catherine Seaborn (in progress)

Journey Segments Per Passenger

Source: 5% Oyster data for 2007 Period 2 (April 29 ☐ May 26)

Consecutive Journey Segments

Journey Segment Mode Sequence

Weekday Journey Segment Patterns

Top 10 patterns shown

Total patterns: 15,802

Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	Passengers	Share	Cumulative Share
U	U					416,082	16.3%	16.3%
В	В					401,356	15.7%	32.0%
В						266,561	10.4%	42.4%
В	В	В				150,781	5.9%	48.3%
В	В	В	В			144,275	5.6%	54.0%
U						125,528	4.9%	58.9%
В	U	U	В			77,353	3.0%	61.9%
В	В	В	В	В		72,943	2.9%	64.8%
U	U	U				65,190	2.6%	67.3%
В	В	В	В	В	В	50,485	2.0%	69.3%

Underground-Underground Journey Segment Entry Times

Bus-Bus Journey Segment Boarding Times

Underground Station Exit to Bus Boarding: Time Difference at Highest Exit Volume Stations

Data source: Transport for London. All Oyster Card journey segments on Wednesday, November 14, 2007.

Bus Boarding to Underground Station Entry: Potential Transfers are Large Share of Entries

Data source: Transport for London. All Oyster Card journey segments on Wednesday, November 14, 2007.